3SPTechnologiesSource of Smart Solutions

Active Components Pump Laser Modules

Key Features

Up to 300 mW operating power

Extended operating temperature range (-5 °C to +75 °C)

Fiber Bragg Grating (FBG) on PMF pigtail

Telcordia GR-468-CORE qualified

RoHS compliant

Applications

Compact size, low power consumption Erbium-Doped Fiber Amplifiers (EDFA)

Multi pumping architectures

Sensors

For more Info

Please contact us at:

Europe & Asia: +33 169 805 750 North America: +1 514 748 4848, Ext 4374

customerservice@3spgroup.com www.3sptechnologies.com

1999PLU

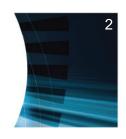
330 mW Kink-Free, FBG Stabilized, 980 nm Uncooled Pump Laser Module

The 1999PLU is a new generation of 980 nm uncooled pump modules powered by in-house chip technology and specifically designed for applications where compactness and power efficiency are required.

Low Profile, 8-pin mini-DIL modules are available with an operating power up to 300 mW.

They incorporate a precision NTC thermistor and a back-facet monitoring photodiode.

The wavelength is "locked" utilizing a fiber Bragg grating (FBG) located in a single mode Polarization Maintaining Fiber (PMF) pigtail at 1.2 m distance from package.


The module meets Telcordia[™] GR-468-Core requirements for hermetic 980 nm pump modules.

330 mW Kink-Free, FBG Stabilized, 980 nm Uncooled Pump Laser Module

ELECTRO-OPTICAL CHARACTERISTICS

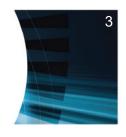
The following parameters are specified BOL for a $T_{submount}$ = 25 °C, T_{case} = -5 °C to 75 °C, V_{BFM} = -5 V and -50 dB max back-reflection unless otherwise stated.

Parameters	Conditions	Symbol	Min	Тур	Max	Unit
PUMP LASER						
Threshold current (1)		I _{th}	-	-	85	mA
Nominal operating power		P _{nom}	100	-	300	mW
Kink free power (2)		P _{kink}	1.1 x P _{nom}	-	-	mW
Forward current (3)	P_{nom} = 100 mW P_{nom} = 150 mW P_{nom} = 200 mW P_{nom} = 250 mW P_{nom} = 300 mW	I _{nom}	- - - -	225 305 385 465 550	280 380 480 580 600	mA
Forward voltage	@up to 250 mW @from 250 mW to 300 mW	V _{nom}	-	1.75 1.75	2.0 2.1	V
Peak wavelength tolerance	@ T _{case} = T _{FBG} = 25 °C 0.1 x P _{nom} to P _{nom}	$\Delta \lambda_{p}$	-	-	±0.5	nm
Wavelength tuning vs temperature (T _{grating} = -5 to 75 °C)		$\Delta\lambda_p$ / ΔT	-	0.01	0.02	nm / °C
Spectral width @ -3 dB	0.1 x P _{nom} to P _{nom}	$\Delta\lambda$ FWHM	-	-	1.0	nm
Spectral width @ -13 dB	0.1 x P _{nom} to P _{nom}	$\Delta\lambda$ FWHM	-	-	1.0	nm
Power in band (4)	P _{nom}	P _{band}	90	-	-	%
Optical power stability	Peak to peak, 10 Hz-50 kHz, 60 sec, Pnom	ΔΡ	-	2.0	3.5	%
Power consumption, EOL	P_{nom} = 100 mW P_{nom} = 150 mW P_{nom} = 200 mW P_{nom} = 250 mW P_{nom} = 300 mW		- - - -	0.35 0.50 0.70 0.90 0.96	0.50 0.75 1.00 1.25 1.35	W
MONITOR DIODE						
Responsivity		I _{BFM} / P	0.5	-	10	μA / mW
Dark current	V _r = 5 V	I _{BFM_dark}	-	50	100	nA
THERMISTOR						
Resistance	25 °C	R _{th}	9.5	10	10.5	kΩ
Constant		β	3600	-	4200	K

⁽¹⁾ I_{th} is the intersection point with the x-axis of a linear fit of the P(I) curve between 15 mW and 50 mW

3SP Technologies Datasheet www.3sptechnologies.com

⁽²⁾ A kink is detected when the local slope dP/dI is below S_{min} or above S_{max}. S_{min} is defined as 0.5xS_{avg} and S_{max} is defined as 1.5xS_{avg}


⁽³⁾ EOL forward current I_{EOL}= 1.1x I_{BOL}

⁽⁴⁾ P_{band} is defined as the power within the band $\lambda p \pm 1.5$ nm vs the total output power

330 mW Kink-Free, FBG Stabilized, 980 nm Uncooled Pump Laser Module

ABSOLUTE MAXIMUM RATINGS

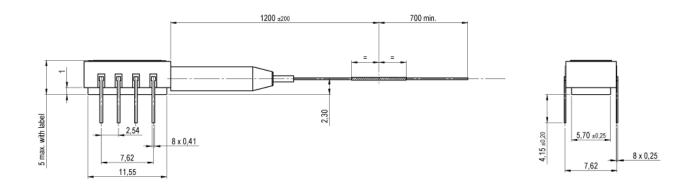
Exposing this device to stresses and conditions above those listed in this section could cause permanent damage and affect reliability. The device is not meant to operate outside the operational limits described in previous section at any length of time.

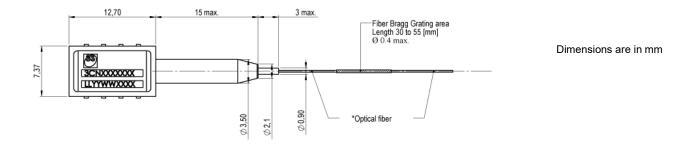
Parameter Conditions	Symbol	Min	Max	Unit
Storage temperature (2000h)	T _{stg}	-40	85	°C
Operating temperature	Top	-5	75	°C
Lead soldering temperature (10s maximum)		-	280	°C
LD forward drive current	I _{f_max}	-	800	mA
LD reverse voltage	V _{r_max}	-	2	V
PD reverse voltage	V _{PD_max}	-	15	V
PD forward current	I _{PD_max}	-	10	mA
ESD* damage	V _{ESD}	-	500	V
Mounting torque		-	150	mN.m
Fiber bend radius		13	-	mm
Axial pull force (1x1min)		-	5	N

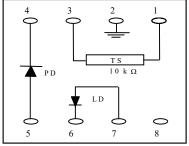
 $^{^{*}}$ Human Body model, C = 100 pF, R = 1.5 k $\!\Omega$

FIBER PIGTAIL CHARACTERISTICS

Parameter	Note	Min	Тур	Max	Unit
Fiber type		SM98-PS-U25A-H or equivalent			
Coating diameter	(except along grating)	230	250	270	μm
FBG recoat diameter		-	-	400	μm
FBG position	Module to center of FBG	-	1.2	-	m
Loose tube buffer diameter		885	-	915	μm
Fiber proof test level		200	-	-	kpsi
Grating proof test level		150	-	-	kpsi
Pigtail termination	Bare fiber				
Polarization State	Aligned parallel to the slow axis				


330 mW Kink-Free, FBG Stabilized, 980 nm Uncooled Pump Laser Module




MECHANICAL DETAILS

PIN **ASSIGNEMENT**

N°	Description
1	Thermistor
2	Case ground
3	Thermistor
4	Monitor PD Cathode
5	Monitor PD Anode
6	Laser Cathode
7	Laser Anode
8	No connect

Totally floating pin-out

330 mW Kink-Free, FBG Stabilized, 980 nm Uncooled Pump Laser Module

LASER SAFETY INFORMATION

This laser module emits invisible light. Take appropriate precautions to prevent undue exposure to naked eye when module is in operation. This product is classified Class 4 Laser Product according to IEC-60825-1.

HANDLING

This product is sensitive to electrostatic discharge and should not be handled except at a static free workstation. Take precautions to prevent ESD; use wrist straps, grounded work surfaces and recognized anti-static techniques when handling the pump laser module. Caution! Handle the module by its package only; never hold it by its pigtail. Care should be taken to avoid supply transient currents and voltages. Drive voltage above the maximum specified in absolute maximum rating section may cause permanent damage to the device.

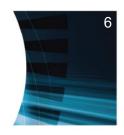
APPLICATION NOTE

In order to prevent any mishandling, misuse, neglect or accident, it is highly recommended to read and follow the instructions detailed in the application note:

RCL IMA APN 000 00005 "Handling, Mounting, Testing and Operating Uncooled 8-pin mini-DIL Laser Pumps 1999PLU series" on 3SP Technologies website.

ORDERING INFORMATION

1999PLU PUMP PRODUCT FAMILY


PMF Pigtail	λ _p = 974.5nm, T= 25 °C	λ _p = 976nm, T= 25 °C		
Nominal Power	Part Number	Part Number		
100 mW	3CN01750AA	3CN01751AA		
150 mW	3CN01750AL	3CN01751AL		
200 mW	3CN01750BA	3CN01751BA		
250 mW	3CN01750BL	3CN01751BL		
300 mW	3CN01750CA	3CN01751CA		

3SP Technologies can also develop custom products to meet a wide range of technical requirements. Please contact your Sales Manager for details.

330 mW Kink-Free, FBG Stabilized, 980 nm Uncooled Pump Laser Module

CONTACT INFORMATION

Europe & Asia: +33 169 805 750

North America: +1 514 748 4848, Ext 4374

customerservice@3spgroup.com www.3sptechnologies.com

IMPORTANT NOTICE

Information in this document is typical and must be specifically confirmed in writing by your supplier before it becomes applicable to any order or contract.

Information is subject to change without notice.

©2019 3SP Technologies S.A.S.

