

This product is sold and supported in the USA by

LASER LAB SOURCE marketplace for Scientists & Engineers

contact@LaserLabSoure.com

800.887.5065

www.LaserLabSource.com phone: 800-887-5065 670 South Ferguson Bozeman, MT 59718

High Performance Optical Component Solutions

DATASHEET

LC155CDC-20

20mW CW Laser

Features

Built-in Fabry-Perot etalon and dual InGaAs PIN photodetector array allows wavelength stabilized operation to within ±20pm over life.

ITU wavelengths available from 1530nm to 1560nm.

InGaAsP Distributed Feedback (DFB) single frequency laser chip.

Polarization maintaining single mode fibre.

Hermetically sealed 14 pin butterfly package with optical isolator.

Integral thermo-electric cooler with precision thermistor.

Applications

SONET/SDH, OC48/STM-16, OC192/STM-64 systems Long and very long reach DWDM Networks Transmitters using a LiNbo3 external modulator.

Description

Offering 20mW CW output power, the LC155CDC is a wavelength stabilized DFB laser suitable for deployment in high speed, DWDM applications with 50 GHz channel spacing.

Incorporating an FP etalon and two monitor photodiodes, The LC155CD

may be locked to the ITU grid and will maintain wavelength within ±20pm.

The laser is supplied in a 14 Pin butterfly package which incorporates a PIN Fibre Pigtail (Fujikura PANDA type).

LC155CDC-20

Characteristics

Conditions unless otherwise sta	erwise stated: PIN detector bias: -5V Optical Back Reflection: -20dB				
Parameter	Conditions/Symbol	Min	Тур	Max	Unit
Optical Output Power	Po	20			mW
Operating Current	L _{op}		175	220	mA
Threshold Current			20	40	mA
Forward Voltage	V _f		1.7	2.7	V
Peak Wavelength Ageing		-20		20	pm
Peak Wavelength SOL		-37	ITU grid	37	pm
Side Mode Suppression	L _{op}	37			dB
Spectral Width			2	20	MHz
PIN Photocurrent	I _m			4	mA
Locking PIN Photocurrent	l _{lock}	0.2		2	mA
PIN Dark Current				100	nA
PIN Spectral Response BW		0.2		0.8	nm
PIN Response Peak Spacing			0.35		nm
Locking Ratio	I _{lock} /I _{peak}	40		80	%
Thermistor Resistance		6.7		12	kOhm
Heatpump Current	Case Temp = 70°C			1.4	А
Heatpump Voltage	Case Temp = 70°C			3	V
Polarization Extinction Ratio		20			dB

Absolute Ratings

Parameter	Conditions/Symbol	Min	Тур	Max	Unit
Case Operating Temperature		0		70	°C
Storage Temperature		-40		85	°C
Laser Bias Current				275	mA
Laser Reverse Voltage				2	V
PIN Photodiode Reverse Bias				15	V
Fibre Bend Radius		35			mm

Typical Performance Characteristics

PIN Long

λ.

LC155CDC-20

Instructions for Use - LC155CDC-20

Pin 1,2,4,11,13,14 Package Ground Ground all Pins for optimum performance

Pin 3 TEC(+) and Pin 12 TEC(-)

Applying a positive voltage on Pin 6 with respect to Pin 7 will cause the internal optics to be cooled relative to the case temperature. Reversing the applied voltage will cause the internal structures to be heated. The power supply for the heatpumps should be capable of sourcing up to 1.2A at 5V.

Pin 5 laser Bias(-) Cathode and Pin 10 Laser Bias(+) Anode

Laser bias current is applied via these Pin 3, both of which are floating with respect to ground. The laser is operated with a forward bias current up to 220mA at 2.7V(max).

Pin 6 Thermistor

The Thermistor is used in the control loop for keeping the internal temperature at a constant value. It has a nominal resistance of $8.2k\Omega$ (at the typical operating temperature of 30° C and is not polarity sensitive. Operating current should be limited to less than 100µA to prevent self-heating errors. The exact thermistor value will be supplied with the device to ensure correct operating wavelength. The other side of the thermistor is internally connected to case ground.

Pin 7 Monitor Anode (short), Pin 8 Monitor Anode (Long) and Pin 9 Monitor Cathode

The two back facet monitor diodes are used in a control loop, which maintains constant laser wavelength. Each diode has a different spectral response, which overlaps at the "locked" wavelength. The loop can control submount temperature and/or laser bias current to maintain the two monitor diode currents at equal values, corresponding to the locked wavelength. The diode cathodes are commoned on pin 9 and are operated with reverse 5V bias.

LC155CDC-20

Connections

Pin	1	Ground	Pin	14	Ground
	2	Ground		13	Ground
	3	Peltier (+)		12	Peltier (-)
	4	Ground		11	Ground
	5	Laser cathode		10	Laser anode
	6	Thermistor		9	PIN cathode
	7	PIN short anode		8	PIN Long anode

Device Ordering Information

Order Code No. LC155CDC****-20 Where **** = Last four digits of wavelength value i.e. for λ_p = 1545.32nm **** = 4532 For wavelength information see Nortel Network's WDM wavelength plan. The fibre pigtail is terminated with a 2.5mm o.d. ferrule.

Nortel Networks Optical Components Ltd. Brixham Road Paignton Devon TQ4 7BE United Kingdom Tel: +44 1803 662106 Fax: +44 1803 662801

Email: opticalcomponents@nortelnetworks.com www.nortelnetworks.com/components/

PB0095 ISSUE 2 July 2000

All data in this document is subject to change in accordance with Nortel Networks Corporation policy of continual product improvement. No data in this document is intended to be used in connection with any contract except as may be first confirmed in writing by Nortel Networks Corporation. The publication of information in this document does not imply freedom from patent or other rights of Nortel Networks Corporation or others. © 2000 Nortel Networks. All rights reserved.

© Nortel Networks, Nortel Networks Logo, the Globemark and Unified Networks are trademarks of Nortel Networks. Information in this document is subject to change without notice. Nortel Networks assumes no responsibility for errors that might appear in this document.

Information in this document is subject to change without notice. Nortel Networks assumes no responsibility for errors that might appear in this document. Printed in England.

